Statistical Reasoning Recommended Competencies **Student Learning Outcomes** **Recommended Competencies** | The Corequisite at Scale Task Force offers the following <i>possible</i> topics of study for a statistical reasoning, corequisite course. These topics include just-in-time learning of foundational skills and review of credit-bearing, course content. Instruction on the efficient use of technology and study skills are also advised. | statistical reasoning. | | |---|---|--| | I. Data Exploration | | | | Students will analyze data using graphical and numerical methods to study patterns and departures from patterns, using appropriate technology as needed. Specifically, students will be able to: Construct and interpret graphical displays of distributions of univariate data. | | | | Possible Corequisite Topics | Pathways Initiative Student Learning Outcomes | | | Plot points and intervals on a number line Perform signed number arithmetic Read to understand information from tables and graphs | Create and interpret dotplots, boxplots, stem and leaf plots and histograms. Analyze center, shape and spread, as well as clusters, gaps, outliers and other unusual features. | | | Summarize distributions of univariate data and o | Summarize distributions of univariate data and compare multiple distributions. | | | Possible Corequisite Topics | Pathways Initiative Student Learning Outcomes | | | Use summation notation Plot an ordered pair (x, y) in a rectangular coordinate system Round decimal values Understand powers and square roots of numbers Understand order of operations | Compute measures of center (median, mean), measures of spread (range, interquartile range, standard deviation) and measures of position (quartiles, other percentiles and standardized scores). Compare groups using back-to-back stem and leaf plots, parallel boxplots and dotplots. | | | Explore bivariate data. | | | | Possible Corequisite Topics | Pathways Initiative Student Learning Outcomes | | | Find the slope of line segment connecting two points, the equation of a line, and graph the equation of a line Find the vertical distance between a point and a line Round decimal values | Analyze scatterplots for patterns, linearity, and outliers. Calculate and interpret the correlation coefficient. | | ### I. Data Exploration (continued) Students will analyze data using graphical and numerical methods to study patterns and departures from patterns, using appropriate technology as needed. Specifically, students will be able to: ### Explore categorical data. | Possible Corequisite Topics | Pathways Initiative Student Learning Outcomes | |---|---| | Read to understand information from a table | Create and interpret frequency tables and bar | | or a graph | charts. | | | Compare distributions of categorical data. | ### **II. Statistical Design** Students will critically evaluate a data-collection plan to answer a given research question. Specifically, students will be able to: Identify characteristics of good study designs. Understand what conclusions are appropriate for a given design and whether conclusions can be generalized to a larger population. | 3 | <u> </u> | |---|---| | Possible Corequisite Topics | Pathways Initiative Student Learning Outcomes | | Read carefully through a problem Know and understand key terms Read carefully to identify important information in a word problem | Identify the population of interest. Determine whether an observational or experimental study is appropriate and feasible. Explain the difference between and importance of random selection and random assignment in study design. | ### Know the elements of planning and conducting an observational study. | | - | |---|---| | Possible Corequisite Topics | Pathways Initiative Student Learning Outcomes | | Distinguish between a sample and a population | Verify basic elements of statistically valid
sample survey. | | Differentiate between key terms | Determine when a census or a sample survey is appropriate. Identify potential sources of bias in sampling and surveys. | ## Know the elements of planning and conducting an experimental study. | Possible Corequisite Topics | Pathways Initiative Student Learning Outcomes | |---|---| | Recognize and differentiate between key
terms Identify dependent and independent
variables | Verify basic elements of statistically valid experimental design. Explain the purpose of including a control group and blinding in an experiment. Identify potential sources of confounding in an experiment. | ### III. Probability and Simulation Students will use probability concepts and simulation. Specifically, students will be able to: ### Determine and interpret probabilities. | Possible Corequisite Topics | Pathways Initiative Student Learning Outcomes | |---|--| | Convert among fractions, decimals, and percents Operate with fractions | Interpret a probability as a long-run relative frequency of occurrence. Calculate the probability of a specified event in a chance experiment with equally likely outcomes. | ### Use probability distributions to describe the behavior of discrete and continuous random variables. ### Possible Corequisite Topics Pathways Initiative Student Learning Outcomes • Decide upon appropriate units of Distinguish between discrete random variables measurement in collection data and continuous random variables. Compute and interpret the mean and standard • Perform signed number arithmetic deviation of the probability distribution of a • Plot numbers on a real number line, find a discrete random variable. mean value and a range Demonstrate an understanding of the mean, • Represent an inequality as an interval on the standard deviation and shape of continuous number line probability distributions (uniform, normal and • Shade an area under the normal distribution skewed). ### **Understand distributions.** | Possible Corequisite Topics | Pathways Initiative Student Learning Outcomes | |---|---| | Recognize and differentiate between key terms | Distinguish between the distribution of a sample and a sampling distribution. Describe the sampling distributions of a sample mean and sample proportion in terms of center, shape and spread. Explain how these relate to sample size. Identify when the use of the normal distribution is appropriate. | ### **IV. Statistical Inference** Students will use statistical models to draw conclusions from data. Specifically, students will be able to: ### Estimate population parameters including confidence intervals when appropriate. | Possible Corequisite Topics | Pathways Initiative Student Learning Outcomes | |--|--| | Understand order of operations Realize properties of inequalities | Verify that the appropriate conditions have been met. Construct one-sample confidence intervals for means and for proportions. Construct two-sample confidence intervals for means. Interpret confidence intervals in context and explain the meaning of the confidence level associated with a confidence interval estimate. | ### Conduct tests of significance when appropriate. | <u> </u> | | |---|---| | Possible Corequisite Topics | Pathways Initiative Student Learning Outcomes | | Understand order of operations Represent an inequality as an interval on the number line Interpret probability Use function notation | Verify that the appropriate conditions have been met. Carry out one-sample hypothesis tests for means and proportions. Carry out two-sample hypothesis tests for means. Interpret the meaning of rejection of the null hypothesis and of failure to reject the null hypothesis, in context. Demonstrate an understanding of the use of a p-value to reach a conclusion and of the difference between practical significance and statistical significance. | # V. Regression Modeling Possible Corequisite Topics Pathways Initiative Student Learning Outcomes ■ Determine the equation of the least-squares regression line and interpret its slope and intercept in context. ■ Understand slope as a ratio of change